section) provides experimental proof of this contention. SnAs with the NaCl-type structure and valence formula Sn²⁺_{0.5}Sn⁴⁺_{0.5}As³⁻, has very nearly the same T_c as InTe with valence formula In⁺_{0.5}In³⁺_{0.5}Te²⁻. Each has the same number of carriers per formula unit (although the carrier concentration of SnAs is somewhat higher than that of InTe because its lattice constant is smaller than that of InTe). The pressure-induced phase with stoichiometric formula In₃Te₄ (see following section) has the anti-Sn₄As₃ structure⁽¹⁰⁾ which is related to the NaCl-type structure. The ionic model applied to this phase indicates that 21 In3+ and $\frac{1}{2}$ In⁺ ions are required to balance the 4 Te valencies and there is one carrier per formula unit; for electrostatic balance, Sn₄As₃ requires 3¹/₂ Sn²⁺ and $\frac{1}{2}$ Sn⁴⁺ ions. The superconducting transition temperatures of In₃Te₄ and Sn₄As₃ are respectively 1.25-1.15°K and 1.19-1.16°K. Because SnAs and InTe have about the same carrier concentrations, and the same T_c 's, it would be logical to conclude that Sn₄As₃ and In₃Te₄ with very nearly the same T_c 's should have very nearly the same carrier concentrations. Thus, In Sn₄As₃ the number of Sn⁴⁺ ions must determine the number of carriers per formula unit, which is again one. Thus for consistency, when the lower valence ions are in excess, the number of carriers is determined by the number of higher valence cations, and when the higher valence cations are in excess, the number of carriers is determined by the number of lower valence cations.

The normalized formula for an In-rich compound with NaCl-type structure is

$In(Te_{2/(2+x)}In_{x/(2+x)}).$

If it is assumed that all In atoms are ionic, we would have

$$y+3\left(1+\frac{x}{2+x}-y\right)=\frac{4}{2+x},$$

from which

and

$$1 + \frac{x}{2+x} - y = (1 - 2x)/(2 + x)$$

y = (1+3x)/(2+x)

which is the number of trivalent ions per formula unit. A plot of T_c (midpoints) vs. *n* for both sides is shown in Fig. 2; the agreement is seen to be $g_{00,\xi}$. The maximum T_c occurs (within experimental error) for stoichiometric InTe which has $m_{a\chi_1}$. mum n.

FIG. 2. Superconducting transition temperature, T_{c_i,v_1} carrier concentration, n.

We have shown⁽²⁾ that, as predicted, substitution of Ag⁺ for In⁺ or As³⁻ for Te²⁻ resulted in a decrease of T_c . Both substitutions cause a decrease in *n*, the Ag⁺ for In⁺ because the Ag 4*d* electron are tightly bound to it and As³⁻ for Te²⁻ by increasing the number of In³⁺ (thereby decreasing the number of In⁺ ions) needed for electrostatic balance. However, in these systems, the carrier concentrations required for a given T_c is always somewhat higher than required in the In_{1-T}T_c system. It may be speculated that this results from scattering by intervening In³⁺ ions which are 'inactive' because they are paired with Ag⁺ or As³⁻ ions. (See also Ref. 2.)

CRYSTAL STRUCTURE OF THE PRESSURE INDUCED In₃Te₄ PHASE

Weissenberg (CuK α radiation) and Buerger precession camera (MoK α radiation) photographs were taken of a single crystal fragment isolated from a run in which an attempt was made to grow a single crystal of the high pressure In₂Te₃ phase. The diffraction symmetry of the combined photographic data is $R\bar{3}m$; with no systematic absences, the possible space groups are $R\bar{3}m-D_{3d}^5$ and $R3m-C_{3v}^5$. The hexagonal axes as determined from the precession camera photographs are $a = 4.27 \pm 0.01$, $c = 40.9 \pm 0.1$ Å; the rhombohedral lattice constants derived from these are a = 13.85 Å, $\alpha = 17.7_3^\circ$.

CRYSTAL

The inter atoms must 1 of the rhom ideally, there hedral cell. ' appeared to 1 likely space § $K\overline{3}m$ with or being in 2 c, $3a,000, \pm (\frac{1}{3};$ it was found structure.⁽¹⁰⁾

Table 2. Inte

Atom
In(1) In(2)
Te(1)
Tc(2)
In(1)
In(2)
Te(1)
'Te(2)

Intensities precession car visually by cor strip. Lorentz plied by mean WELLS-ABRAH made for absc structural Sn4 along the hexa Thus using the tudes and the around multipl MARTIN-LEVY

356