section) provides experimental proof of this contention. SnAs with the NaCl-type structure and valence formula $\operatorname{Sn}_{0}^{2+}{ }_{5}^{2+} \operatorname{Sn}_{0}^{4} \cdot 5 \mathrm{As}^{3-}$, has very nearly the same $T_{c}$ as InTe with valence formula $\mathrm{In}_{0.5}^{+} \mathrm{In}_{0.5}^{3+} \mathrm{Te}^{2-}$. Each has the same number of carriers per formula unit (although the carrier concentration of SnAs is somewhat higher than that of In Te because its lattice constant is smaller than that of InTe ). The pressure-induced phase with stoichiometric formula $\mathrm{In}_{3} \mathrm{Te}_{4}$ (see following section) has the anti- $\mathrm{Sn}_{4} \mathrm{As}_{3}$ structure ${ }^{(10)}$ which is related to the NaCl-type structure. The ionic model applied to this phase indicates that $2 \frac{1}{2} \mathrm{In}^{3+}$ and $\frac{1}{2} \mathrm{In}^{+}$ions are required to balance the 4 Te valencies and there is one carrier per formula unit; for electrostatic balance, $\mathrm{Sn}_{4} \mathrm{As}_{3}$ requires $3 \frac{1}{2} \mathrm{Sn}^{2+}$ and $\frac{1}{2} \mathrm{Sn}^{4+}$ ions. The superconducting transition temperatures of $\mathrm{In}_{3} \mathrm{Te}_{4}$ and $\mathrm{Sn}_{4} \mathrm{As}_{3}$ are respectively $1 \cdot 25-1 \cdot 15^{\circ} \mathrm{K}$ and $1 \cdot 19-1 \cdot 16^{\circ} \mathrm{K}$. Because SnAs and InTe have about the same carrier concentrations, and the same $T_{c}$ 's, it would be logical to conclude that $\mathrm{Sn}_{4} \mathrm{As}_{3}$ and $\mathrm{In}_{3} \mathrm{Te}_{4}$ with very nearly the same $T_{c}$ 's should have very nearly the same carrier concentrations. Thus, In $\mathrm{Sn}_{4} \mathrm{As}_{3}$ the number of $\mathrm{Sn}^{4+}$ ions must determine the number of carriers per formula unit, which is again one. Thus for consistency, when the lower valence ions are in excess, the number of carriers is determined by the number of higher valence cations, and when the higher valence cations are in excess, the number of carriers is determined by the number of lower valence cations.

The normalized formula for an In-rich compound with NaCl -type structure is

$$
\operatorname{In}\left(\mathrm{Te}_{2 /(2+x)} \operatorname{In}_{x /(2+x)}\right)
$$

If it is assumed that all In atoms are ionic, we would have

$$
y+3\left(1+\frac{x}{2+x}-y\right)=\frac{4}{2+x},
$$

from which

$$
y=(1+3 x) /(2+x)
$$

and

$$
1+\frac{x}{2+x}-y=(1-2 x) /(2+x)
$$

which is the number of trivalent ions per formula unit. A plot of $T_{c}$ (midpoints) vs. $n$ for both sides is
shown in Fig. 2; the agreement is seen to be goos The maximum $T_{c}$ occurs (within experimen: error) for stoichiometric InTe which has maxi. mum $n$.


Fig. 2. Superconducting transition temperature, $T_{c, n}$ carrier concentration, $n$.

We have shown ${ }^{(2)}$ that, as predicted, substitutio: of $\mathrm{Ag}^{+}$for $\mathrm{In}^{+}$or $\mathrm{As}^{3-}$ for $\mathrm{Te}^{2-}$ resulted in decrease of $T_{c}$. Both substitutions cause a decreav in $n$, the $\mathrm{Ag}^{+}$for $\mathrm{In}^{+}$because the $\mathrm{Ag} 4 d$ electron are tightly bound to it and $\mathrm{As}^{3-}$ for $\mathrm{Te}^{2-}$ by in. creasing the number of $\mathrm{In}^{3+}$ (thereby decreasin; the number of $\mathrm{In}^{+}$ions) needed for electrostatio balance. However, in these systems, the carric concentrations required for a given $T_{c}$ is alway somewhat higher than required in the $\mathrm{In}_{1-1} \mathrm{~T}_{\mathrm{c}}$ system. It may be speculated that this results from scattering by intervening $\mathrm{In}^{3+}$ ions which art 'inactive' because they are paired with $\mathrm{Ag}^{+}$of As $^{3-}$ ions. (See also Ref. 2.)

## CRYSTAL STRUCTURE OF THE PRESSURE INDUCED $\mathrm{In}_{3} \mathrm{Te}_{4}$ PHASE

Weissenberg ( $\mathrm{CuK} \alpha$ radiation) and Buerget precession camera ( $\mathrm{MoK} \alpha$ radiation) photograpts were taken of a single crystal fragment isolated from a run in which an attempt was made to grow a single crystal of the high pressure $\mathrm{In}_{2} \mathrm{Te}_{3}$ phase. The diffraction symmetry of the combined photographic data is $R \overline{3} m$; with no systematic absences the possible space groups are $R \overline{3} m-D_{3 d}^{5}$ and $R 3 m-C_{3 v}^{5}$. The hexagonal axes as determind from the precession camera photographs are $a=4.27 \pm 0.01, c=40.9 \pm 0.1 \AA$; the rhombs. hedral lattice constants derived from these art $a=13.8_{5} \AA, \alpha=17.7_{3}{ }^{\circ}$.

The inter 2:oms must ] of the rhom itcolly, there hadral cell. sppeared to W. k ly space RKM with or being in $2 c$, $3,2,000, \pm\left(\begin{array}{l}1 \\ 3\end{array}\right.$ it was found structure. ${ }^{(10)}$
Table 2. Inte

Atom

Intensities precession car visually by cor strip. Lorentz plicd by mean Willes-Abraif made for abso structural $\mathrm{Sn}_{4}$ along the hexa Thus using th tudes and the around multip. Martin-Levy

